Add like
Add dislike
Add to saved papers

Constitutive expression of CmSKOR, an outward K + channel gene from melon, in Arabidopsis thaliana involved in saline tolerance.

Shaker-like K+ outward rectifying channel (SKOR) is involved in mediating long-distance K+ transport from roots to shoots. In this study, a Shaker-like outward K+ channel gene CmSKOR (GenBank accession number MF447462) was isolated from melon (Cucumis melo L.). Phylogenetic analysis showed that CmSKOR belongs to the SKOR-subfamily in the Shaker-like K+ channel family. Electrophysiological experiments indicated that CmSKOR was a K+ -permeable channel with low affinity. Expressed in Xenopus oocytes, CmSKOR displayed classical Shaker-like outwardly rectifying K+ currents. Confocal imaging of a CmSKOR - yellow fluorescent fusion protein (YFP) in transgenic Nicotiana tabacum leaves indicated that CmSKOR was located in the plasma membrane. Transcript analysis showed CmSKOR predominantly expressed in melon roots and with lower abundance in stem and leaves. In addition, both external K+ and NaCl treatment could up-regulate the expression of CmSKOR in melon and enhance the K+ content in shoot. Constitutive overexpressed CmSKOR in Arabidopsis thaliana, the transgenic plants showed changes in root length in MS plates, displayed higher maximum photochemical efficiency of PSII (Fv/Fm), higher fresh and dry weight, and accumulation of K+ in shoot, together with the changes of transcript amount of CmSKOR with NaCl treatments in mixture substrate. In conclusion, it was proposed that CmSKOR may play the role on distributing K+ to the shoot in melon and its constitutive expression in Arabidopsis improved saline tolerance by maintaining K+ homeostasis in the plant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app