Add like
Add dislike
Add to saved papers

Characterization of Reversibly Switchable Fluorescent Proteins in Optoacoustic Imaging.

Analytical Chemistry 2018 September 5
Reversibly switchable fluorescent proteins (rsFPs) have had a revolutionizing effect on life science imaging due to their contribution to sub-diffraction-resolution optical microscopy (nanoscopy). Initial studies showed that their use as labels could also be highly beneficial for emerging photo- or optoacoustic imaging. It could be shown that their use in optoacoustics (i) strongly improves the imaging contrast-to-noise ratio due to modulation and locked-in detection, (ii) facilitates fluence calibration, affording precise measurements of physiological parameters, and finally (iii) could boost spatial resolution following similar concepts as used for nanoscopy. However, rsFPs show different photophysical behavior in optoacoustics than in optical microscopy because optoacoustics requires pulsed illumination and depends on signal generation via nonradiative energy decay channels. This implies that rsFPs optimized for fluorescence imaging may not be ideal for optoacoustics. Here, we analyze the photophysical behavior of a broad range of rsFPs with optoacoustics and analyze how the experimental factors central to optoacoustic imaging influence the different types of rsFPs. Finally, we discuss how knowledge of the switching behavior can be exploited for various optoacoustic imaging approaches using sophisticated temporal unmixing schemes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app