Add like
Add dislike
Add to saved papers

Removal models accounting for temporary emigration.

Biometrics 2018 August 7
Removal of protected species from sites scheduled for development is often a legal requirement in order to minimize the loss of biodiversity. The assumption of closure in the classic removal model will be violated if individuals become temporarily undetectable, a phenomenon commonly exhibited by reptiles and amphibians. Temporary emigration can be modeled using a multievent framework with a partial hidden process, where the underlying state process describes the movement pattern of animals between the survey area and an area outside of the study. We present a multievent removal model within a robust design framework which allows for individuals becoming temporarily unavailable for detection. We demonstrate how to investigate parameter redundancy in the model. Results suggest the use of the robust design and certain forms of constraints overcome issues of parameter redundancy. We show which combinations of parameters are estimable when the robust design reduces to a single secondary capture occasion within each primary sampling period. Additionally, we explore the benefit of the robust design on the precision of parameters using simulation. We demonstrate that the use of the robust design is highly recommended when sampling removal data. We apply our model to removal data of common lizards, Zootoca vivipara, and for this application precision of parameter estimates is further improved using an integrated model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app