Add like
Add dislike
Add to saved papers

Toxicity and Safety Evaluation of Doxorubicin-Loaded Cockleshell-Derived Calcium Carbonate Nanoparticle in Dogs.

Doxorubicin (DOX) is a potent anticancer agent with cytotoxic effects which limit its clinical usage. This effect is due to its nonselective nature causing injury to the cells as a result of reactive free oxygen radical's release. Cockleshell-derived calcium carbonate nanoparticle (CS-CaCO3 NP) is a pH-responsive carrier with targeted delivery potentials. This study aimed at evaluating the toxicity effects of repeated dose administration of DOX-loaded CS-CaCO3 NP in healthy dogs. Fifteen dogs with an average body weight of 15 kg were randomized equally into 5 groups. Dogs were subjected to 5 doses at every 3-week interval with (i) normal saline, (ii) DOX, 30 mg/m2 , and the experimental groups: CS-CaCO3 NP-DOX at (iii) high dose, 50 mg/m2 , (iv) clinical dose, 30 mg/m2 , and (v) low dose, 20 mg/m2 . Radiographs, electrocardiography, and blood samples were collected before every treatment for haematology, serum biochemistry, and cardiac injury assessment. Heart and kidney tissues were harvested after euthanasia for histological and ultrastructural evaluation. The cumulative dose of DOX 150 mg/m2 over 15 weeks revealed significant effects on body weight, blood cells, functional enzymes, and cardiac injury biomarkers with alterations in electrocardiogram, myocardium, and renal tissue morphology. However, the dogs given CS-CaCO3 NP-DOX 150 mg/m2 and below did not show any significant change in toxicity biomarker as compared to those given normal saline. The study confirmed the safety of repeated dose administration of CS-CaCO3 NP-DOX (30 mg/m2 ) for 5 cycles in dogs. This finding offers opportunity to dogs with cancer that might require long-term administration of DOX without adverse effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app