Add like
Add dislike
Add to saved papers

BAIBA Attenuates the Expression of Inflammatory Cytokines and Attachment Molecules and ER Stress in HUVECs and THP-1 Cells.

OBJECTIVE: β-Aminoisobutyric acid (BAIBA), a myokine, is a thymine catabolite that is induced during exercise, leading to browning of white fat, hepatic fatty acid oxidation, and suppression of hepatic lipogenesis. However, the effects of BAIBA on the progression of atherosclerosis remain unclear.

METHODS: We performed a Western blot analyses to determine various protein expression. ELISAs (enzyme-linked immunosorbent assays), cell adhesion assays, and cell viability assays were also performed on human umbilical vascular endothelial cells (HUVECs) and human monocytes (THP-1 cells).

RESULTS: In the current study, we demonstrate that BAIBA suppresses atherosclerotic reactions caused by lipopolysaccharide (LPS) treatment via an AMPK-dependent pathway. Treatment of HUVECs and THP-1 cells with BAIBA inhibited the LPS-induced phosphorylation of nuclear factor-κB (NFκB) and the secretion of proinflammatory cytokines. In HUVECs, expression of adhesion molecules and LPS-stimulated adhesion of THP-1 cells to the endothelium were significantly decreased after BAIBA treatment. Furthermore, LPS-induced endoplasmic reticulum (ER) stress and cell toxicity were significantly decreased after BAIBA treatment of HUVECs. Notably, all of these proatherosclerotic effects were fully abrogated by treatment with small interfering RNA targeting AMPK.

CONCLUSION: BAIBA ameliorates LPS-induced atherosclerotic reactions via AMPK-mediated suppression of inflammation and ER stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app