Add like
Add dislike
Add to saved papers

Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast.

Phytochemistry 2018 November
Ganoderic acids, a group of oxygenated lanostane-type triterpenoids, are the major bioactive compounds produced by the well-known medicinal macro fungus Ganoderma lucidum. More than 150 ganoderic acids have been identified, and the genome of G. lucidum has been sequenced recently. However, the biosynthetic pathways of ganoderic acids have not yet been elucidated. Here, we report the functional characterization of a cytochrome P450 gene CYP512U6 from G. lucidum, which is involved in the ganoderic acid biosynthesis. CYP512U6 hydroxylates the ganoderic acids DM and TR at the C-23 position to produce hainanic acid A and ganoderic acid Jc, respectively. In addition, CYP512U6 can also hydroxylate a modified ganoderic acid DM in which the C-3 ketone has been reduced to hydroxyl by the sterol reductase ERG27 from Saccharomyces cerevisiae. An NADPH-dependent cytochrome P450 reductase from G. lucidum was also isolated and characterized. These results will help elucidate the biosynthetic pathways of ganoderic acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app