Add like
Add dislike
Add to saved papers

A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals.

The commonly used classifiers for pattern recognition of human motion, like backpropagation neural network (BPNN) and support vector machine (SVM), usually implement the classification by extracting some hand-crafted features from the human biological signals. These features generally require the domain knowledge for researchers to be designed and take a long time to be tested and selected for high classification performance. In contrast, convolutional neural network (CNN), which has been widely applied to computer vision, can learn to automatically extract features from the training data by means of convolution and subsampling, but CNN training usually requires large sample data and has the overfitting problem. On the other hand, SVM has good generalization ability and can solve the small sample problem. Therefore, we proposed a CNN-SVM combined model to make use of their advantages. In this paper, we detected 4-channel mechanomyography (MMG) signals from the thigh muscles and fed them in the form of time series signals to the CNN-SVM combined model for the pattern recognition of knee motion. Compared with the common classifier performing the classification with hand-crafted features, the CNN-SVM combined model could automatically extract features using CNN, and better improved the generalization ability of CNN and the classification accuracy by means of combining the SVM. This study would provide reference for human motion recognition using other time series signals and further expand the application fields of CNN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app