Add like
Add dislike
Add to saved papers

Proprioceptive input to a descending pathway conveying antennal postural information: Terminal organisation of antennal hair field afferents.

Like several other arthropod species, stick insects use their antennae for tactile exploration of the near-range environment and for spatial localisation of touched objects. More specifically, Carausius morosus continuously moves its antennae during locomotion and reliably responds to antennal contact events with directed movements of a front leg. Here we investigate the afferent projection patterns of antennal hair fields (aHF), proprioceptors known to encode antennal posture and movement, and to be involved in antennal movement control. We show that afferents of all seven aHF of C. morosus have terminal arborisations in the dorsal lobe (DL) of the cerebral (=supraoesophageal) ganglion, and descending collaterals that terminate in a characteristic part of the gnathal (=suboesophageal) ganglion. Despite differences of functional roles among aHF, terminal arborisation patterns show no topological arrangement according to segment specificity or direction of movement. In the DL, antennal motoneuron neurites show arborizations in proximity to aHF afferent terminals. Despite the morphological similarity of single mechanoreceptors of aHF and adjacent tactile hairs on the pedicel and flagellum, we find a clear separation of proprioceptive and exteroceptive mechanosensory neuropils in the cerebral ganglion. Moreover, we also find this functional separation in the gnathal ganglion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app