Add like
Add dislike
Add to saved papers

Flexible parametric approach to classical measurement error variance estimation without auxiliary data.

Biometrics 2018 August 5
Measurement error in the continuous covariates of a model generally yields bias in the estimators. It is a frequent problem in practice, and many correction procedures have been developed for different classes of models. However, in most cases, some information about the measurement error distribution is required. When neither validation nor auxiliary data (e.g., replicated measurements) are available, this specification turns out to be tricky. In this article, we develop a flexible likelihood-based procedure to estimate the variance of classical additive error of Gaussian distribution, without additional information, when the covariate has compact support. The performance of this estimator is investigated both in an asymptotic way and through finite sample simulations. The usefulness of the obtained estimator when using the simulation extrapolation (SIMEX) algorithm, a widely used correction method, is then analyzed in the Cox proportional hazards model through other simulations. Finally, the whole procedure is illustrated on real data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app