Add like
Add dislike
Add to saved papers

Rationally designed perturbation factor drives evolution in Saccharomyces cerevisiae for industrial application.

Saccharomyces cerevisiae strains with favorable characteristics are preferred for application in industries. However, the current ability to reprogram a yeast cell on the genome scale is limited due to the complexity of yeast ploids. In this study, a method named genome replication engineering-assisted continuous evolution (GREACE) was proved efficient in engineering S. cerevisiae with different ploids. Through iterative cycles of culture coupled with selection, GREACE could continuously improve the target traits of yeast by accumulating beneficial genetic modification in genome. The application of GREACE greatly improved the tolerance of yeast against acetic acid compared with their parent strain. This method could also be employed to improve yeast aroma profile and the phenotype could be stably inherited to the offspring. Therefore, GREACE method was efficient in S. cerevisiae engineering and it could be further used to evolve yeast with other specific characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app