Add like
Add dislike
Add to saved papers

Efficient copper-based DNA cleavers from carboxylate benzimidazole ligands.

Four copper(II) coordination compounds from 2-benzimidazole propionic acid (Hbzpr) and 4-(benzimidazol-2-yl)-3-thiobutanoic acid (Hbztb) were synthesized and fully characterized by elemental analyses, electronic spectroscopy, FT-IR and mass spectrometry. The molecular structure for the four complexes was confirmed by single-crystal X-ray crystallography. The DNA-interacting properties of the two trinuclear and two mononuclear compounds were investigated using different spectroscopic techniques including absorption titration experiments, fluorescence spectroscopy and circular dichroism spectroscopy. Trinuclear [Cu3 (bzpr)4 (H2 O)2 ](NO3 )2 ·3H2 O·CH3 OH (2) and [Cu3 (bzpr)4 Cl2 ]·3H2 O (3) bind to DNA through non-intercalative interactions, while for mononuclear [Cu(bzpr)2 (H2 O)]·2H2 O (1) and [Cu(bztb)2 ]·2H2 O (4), at minor concentrations in relation to the DNA, a groove binding interaction is favored, while at higher concentrations an intercalative mode is preferred. The nuclease properties of all complexes were studied by gel electrophoresis, which showed that they were able to cleave supercoiled plasmid DNA (form I) to the nicked form (form II). Compound 4 is even capable of generating linear form III (resulting from double-strand cleavage). The proposed mechanism of action involves an oxidative pathway (Fenton-type reaction), which produces harmful reactive species, like hydroxyl radicals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app