Add like
Add dislike
Add to saved papers

Genetic Association of Single Nucleotide Polymorphisms with Acetaminophen-Induced Hepatotoxicity.

Acetaminophen is commonly used to reduce pain and fever. Unfortunately, overdose of acetaminophen is a leading cause of acute liver injury and failure in many developed countries. The majority of acetaminophen is safely metabolized in the liver and excreted in the urine; however, a small percentage is converted to the highly reactive N -acetyl- p -benzoquinone imine (NAPQI). At therapeutic doses, NAPQI is inactivated by glutathione S -transferases, but at toxic levels, excess NAPQI forms reactive protein adducts that lead to hepatotoxicity. Individual variability in the response to both therapeutic and toxic levels of acetaminophen suggests a genetic component is involved in acetaminophen metabolism. In this review, we evaluate the genetic association studies that have identified 147 single nucleotide polymorphisms linked to acetaminophen-induced hepatotoxicity. The identification of novel genetic markers for acetaminophen-induced hepatotoxicity provides a rich resource for further evaluation and may lead to improved prognosis, prevention, and treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app