Add like
Add dislike
Add to saved papers

Exosomes derived from TRAIL-engineered mesenchymal stem cells with effective anti-tumor activity in a mouse melanoma model.

Exosomes are biological nano-sized vesicles (~30-200 nm in diameter) that are produced by a wide range of cells and play several roles in cell-cell communications. These vesicles contain membrane and cytoplasmic components of producing cells. Mesenchymal stem cells (MSCs) are the ideal producer of exosomes. The secreted vesicles from MSCs are promising biological vehicles for cell-free therapy in regenerative medicine, cancer therapy and targeted delivery of therapeutic agents to the tumor cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising member of the TNF family with selective effect on cancerous cells. Recent evidences showed that the membrane TRAIL-armed exosomes possess anti-tumor activity. However, the effect of in vivo administration of TRAIL-armed exosomes has not been reported so far. In the current study, mesenchymal stem cells expressing TRAIL/GFP proteins were prepared with the help of a non-viral vector based on polyethylenimine 25 kDa. Then, exosomes containing TRAIL protein (Exo-TRAIL) were isolated from the supernatant of genetically engineered MSCs and characterized. Antitumor activity of both MSC-derived exosomes and Exo-TRAIL was investigated in vitro and in vivo in three models. The results indicated that the co-injection of both Exo-TRAIL and tumor cells delayed the tumor appearance. Besides, the tumor volume/weight was efficiently decreased in tumor bearing mice. Moreover, it was shown that multi-dose injections of Exo-TRAIL reduced the tumor size while single dose treatment with Exo-TRAIL did not show significant anti-tumor activity. To conclude, these results suggested that MSC-derived Exo-TRAIL has a potential capacity for cancer treatment. [corrected].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app