Add like
Add dislike
Add to saved papers

Quenching Effects of Graphene Oxides on the Fluorescence Emission and Reactive Oxygen Species Generation of Chloroaluminum Phthalocyanine.

The photophysical behavior and reactive oxygen species (ROS) generation by chloroaluminum phthalocyanine (AlClPc) are evaluated by steady state absorption/emission, transient emission, and electron paramagnetic resonance spectroscopies in the presence of graphene oxide (GO), reduced graphene oxide (RGO), and carboxylated nanographene oxide (NGO). AlClPc and graphene oxides form a supramolecular structure stabilized by π-π interactions, which quantitatively quenches fluorescence emission and suppresses ROS generation. These effects occur even when graphenes are previously functionalized with Pluronic F-127. A small part of quenching is due to an inner filter effect, in which graphene oxides compete with AlClPc for light absorption. Nonetheless, most of the (static) quenching arises on the formation of a nonemissive ground state complex between AlClPc and graphene oxides. The efficiency of graphene oxides on the fluorescence quenching and ROS generation suppression follows the order: GO < NGO < RGO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app