Add like
Add dislike
Add to saved papers

Probing the Internal Atomic Charge Density Distributions in Real Space.

ACS Nano 2018 September 26
Probing the charge density distributions in materials at atomic scale remains an extremely demanding task, particularly in real space. However, recent advances in differential phase contrast-scanning transmission electron microscopy (DPC-STEM) bring this possibility closer by directly visualizing the atomic electric field. DPC-STEM at atomic resolutions measures how a sub-angstrom electron probe passing through a material is affected by the atomic electric field, the field between the nucleus and the surrounding electrons. Here, we perform a fully quantitative analysis which allows us to probe the charge density distributions inside atoms, including both the positive nuclear and the screening electronic charges, with subatomic resolution and in real space. By combining state-of-the-art DPC-STEM experiments with advanced electron scattering simulations we are able to map the spatial distribution of the electron cloud within individual atomic columns. This work constitutes a crucial step toward the direct atomic scale determination of the local charge redistributions and modulations taking place in materials systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app