Add like
Add dislike
Add to saved papers

Dual-electrode motion artifact cancellation for mobile electroencephalography.

OBJECTIVE: Our purpose was to evaluate the ability of a dual electrode approach to remove motion artifact from electroencephalography (EEG) measurements.

APPROACH: We used a phantom human head model and robotic motion platform to induce motion while collecting scalp EEG. We assembled a dual electrode array capturing (a) artificial neural signals plus noise from scalp EEG electrodes, and (b) electrically isolated motion artifact noise. We recorded artificial neural signals broadcast from antennae in the phantom head during continuous vertical sinusoidal movements (stationary, 1.00, 1.25, 1.50, 1.75, 2.00 Hz movement frequencies). We evaluated signal quality using signal-to-noise ratio (SNR), cross-correlation, and root mean square error (RMSE) between the ground truth broadcast signals and the recovered EEG signals.

MAIN RESULTS: Signal quality was restored following noise cancellation when compared to single electrode EEG measurements collected with no phantom head motion.

SIGNIFICANCE: We achieved substantial motion artifact attenuation using secondary electrodes for noise cancellation. These methods can be applied to studying electrocortical signals during human locomotion to improve real-world neuroimaging using EEG.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app