Add like
Add dislike
Add to saved papers

Dysregulated Neurotransmission induces Trans-synaptic degeneration in reconstructed Neuronal Networks.

Scientific Reports 2018 August 3
Increasing evidence suggests that pathological hallmarks of chronic degenerative syndromes progressively spread among interconnected brain areas in a disease-specific stereotyped pattern. Functional brain imaging from patients affected by various neurological syndromes such as traumatic brain injury and stroke indicates that the progression of such diseases follows functional connections, rather than simply spreading to structurally adjacent areas. Indeed, initial damage to a given brain area was shown to disrupt the communication in related brain networks. Using cortico-striatal neuronal networks reconstructed in a microfluidic environment, we investigated the role of glutamate signaling in activity-dependent neuronal survival and trans-synaptic degeneration processes. Using a variety of neuronal insults applied on cortical neurons, we demonstrate that acute injuries such as axonal trauma, focal ischemia, or alteration of neuronal rhythms, lead to glutamate-dependent striatal neuron dysfunction. Interestingly, focal pro-oxidant insults or chronic alteration of spontaneous cortical rhythms provoked dysfunction of distant striatal neurons through abnormal glutamate GluN2B-NMDAR-mediated signaling at cortico-striatal synapses. These results indicate that focal alteration of cortical functions can initiate spreading of dysfunction along neuronal pathways in the brain, reminiscent of diaschisis-like processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app