Add like
Add dislike
Add to saved papers

A Targeted Quantitative Proteomic Approach Assesses the Reprogramming of Small GTPases during Melanoma Metastasis.

Cancer Research 2018 September 16
Small GTPases of the Ras superfamily are master regulators of intracellular trafficking and constitute essential signaling components in all eukaryotes. Aberrant small GTPase signaling is associated with a wide spectrum of human diseases, including cancer. Here, we developed a high-throughput, multiple reaction monitoring-based workflow, coupled with stable isotope labeling by amino acids in cell culture, for targeted quantification of approximately 100 small GTPases in cultured human cells. Using this method, we investigated the differential expression of small GTPases in three pairs of primary and metastatic melanoma cell lines. Bioinformatic analyses of The Cancer Genome Atlas data and other publicly available data as well as cell-based assays revealed previously unrecognized roles of RAB38 in promoting melanoma metastasis. Diminished promoter methylation and the subsequent augmented binding of transcription factor MITF contributed to elevated expression of RAB38 gene in metastatic versus primary melanoma cells. Moreover, RAB38 promoted invasion of cultured melanoma cells by modulating the expression and activities of matrix metalloproteinases-2 and -9. Together, these data establish a novel targeted proteomic method for interrogating the small GTPase proteome in human cells and identify epigenetic reactivation of RAB38 as a contributing factor to metastatic transformation in melanoma. Significance: A novel quantitative proteomic method leads to the discovery of RAB38 as a new driver of metastasis in melanoma. Cancer Res; 78(18); 5431-45. ©2018 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app