Add like
Add dislike
Add to saved papers

Physiological responses to elevated temperature across the geographic range of a terrestrial salamander.

Widespread species often possess physiological mechanisms for coping with thermal heterogeneity, and uncovering these mechanisms provides insight into species responses to climate change. The emergence of non-invasive corticosterone (CORT) assays allows us to rapidly assess physiological responses to environmental change on a large scale. We lack, however, a basic understanding of how temperature affects CORT, and whether temperature and CORT interactively affect performance. Here, we examine the effects of elevated temperature on CORT and whole-organism performance in a terrestrial salamander, Plethodon cinereus, across a latitudinal gradient. Using water-borne hormone assays, we found that raising ambient temperature from 15 to 25°C increased CORT release at a similar rate for salamanders from all sites. However, CORT release rate was higher overall in the warmest, southernmost site. Elevated temperatures also affected physiological performance, but the effects differed among sites. Ingestion rate increased in salamanders from the warmer sites but remained the same for those from cooler sites. Mass gain was reduced for most individuals, though this reduction was more dramatic in salamanders from the cooler sites. We also found a temperature-dependent relationship between CORT and food conversion efficiency (i.e., the amount of mass gained per unit food ingested). CORT was negatively related to food conversion efficiency at 25°C but was unrelated at 15°C. Thus, the energetic gains of elevated ingestion rates may be counteracted by elevated CORT release rates experienced by salamanders in warmer environments. By integrating multiple physiological metrics, we highlight the complex relationships between temperature and individual responses to warming climates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app