Add like
Add dislike
Add to saved papers

Adaptive Fibrogenic Reprogramming of Osteosarcoma Stem Cells Promotes Metastatic Growth.

Cell Reports 2018 July 32
It is well established that fibrotic remodeling of the tumor microenvironment favors tumorigenesis, but whether fibrosis underlies malignant progression in other ways is unclear. Here, we report that adaptive myofibroblastic reprogramming of osteosarcoma stem cells (OSCs) results in a critical advantage when establishing lung macro-metastases and spheroid growth but does not affect the growth of primary lesions or monolayer cultures. FGFR2 signaling in OSCs initiates fibrosis, whereas the resultant fibronectin (FN) auto-deposition sustains fibrogenic reprogramming and OSC growth, resembling the process employed by non-malignant myofibroblasts to cause tissue fibrosis. Furthermore, we provide evidence that nintedanib targets the pan FGFR-FN axis to disrupt lung metastasis without affecting the bone lesion growth of OSCs. Thus, myofibroblastic reprogramming of human OSCs in the lungs might represent a druggable trait for treating a deadly metastatic complication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app