Add like
Add dislike
Add to saved papers

Montmorillonite and Laponite Clay Materials for the Solidification of Lipid-Based Formulations for the Basic Drug Blonanserin: In Vitro and in Vivo Investigations.

Molecular Pharmaceutics 2018 September 5
Solid-state lipid-based formulations offer great potential for the improved oral delivery of poorly water-soluble drugs. This study investigates the use of the high-surface-area clay materials, montmorillonite and laponite, as solid carriers for lipid-based formulations. The unique cation-exchange properties of clay platelets were exploited to preload the ionizable hydrophobic compound, blonanserin, prior to encapsulating a drug-loaded lipid solution. Thus, solid-state lipid-based formulations with dual-loading capabilities were developed and studied. These formulations were compared with simple clay-based lipid formulations, where blonanserin was loaded in the lipid phase only. The drug release behavior of all clay-based formulations was assessed during in vitro dissolution studies under simulated gastric conditions and in vitro fasting intestinal lipolysis studies. Montmorillonite- and laponite-based lipid formulations significantly reduced blonanserin solubilization relative to a control lipid solution and silica-lipid hybrid particles, owing to incomplete drug release from the clay cation-exchange sites. This phenomenon was replicated during in vivo pharmacokinetic studies, whereby the bioavailability of simple clay-based lipid formulations was decreased relative to controls. Importantly, the solid-state dual-loaded montmorillonite-based lipid formulation provided an optimal pharmacokinetic performance, achieving the same degree of bioavailability enhancement as the control lipid solution. These findings indicate the potential of solid-state dual-loaded clay-based lipid formulations for increasing drug loading levels and enhancing the oral absorption of poorly soluble weak base compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app