Add like
Add dislike
Add to saved papers

The General Explanation Method with NMR Spectroscopy Enables the Identification of Metabolite Profiles Specific for Normal and Tumor Cell Lines.

Machine learning models in metabolomics, despite their great prediction accuracy, are still not widely adopted owing to the lack of an efficient explanation for their predictions. In this study, we propose the use of the general explanation method to explain the predictions of a machine learning model to gain detailed insight into metabolic differences between biological systems. The method was tested on a dataset of 1 H NMR spectra acquired on normal lung and mesothelial cell lines and their tumor counterparts. Initially, the random forests and artificial neural network models were applied to the dataset, and excellent prediction accuracy was achieved. The predictions of the models were explained with the general explanation method, which enabled identification of discriminating metabolic concentration differences between individual cell lines and enabled the construction of their specific metabolic concentration profiles. This intuitive and robust method holds great promise for in-depth understanding of the mechanisms that underline phenotypes as well as for biomarker discovery in complex diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app