Add like
Add dislike
Add to saved papers

Antimicrobial and Anti-Biofilm Activities of Surface Engineered Polycationic Albumin Nanoparticles with Reduced Hemolytic Activity.

Protein-based polymeric polyelectrolytes are emerging as alternative synthetic nanoparticles owing to their biodegradability and biocompatibility. However, potential in vivo toxicity remains a significant challenge. Herein an array of protein polyelectrolytes generated from cationic human serum albumin (cHSA) and polyethylene glycol (PEG) are synthesized via synthetic customization as antimicrobials for the treatment of systemic infections. By varying PEG molecular weight and chain length, in vitro hemolytic activity can be fine-tuned without significantly affecting antimicrobial potency. The optimal hybrid material, PEG (2000)18 -cHSA, with potent antimicrobial character, low hemolytic activity, and in vitro biofilm disruptive properties is identified. Surface plasmon resonance (SPR) evaluation demonstrates significantly higher binding activity of the protein nanoparticles to bacteria cell wall components and microfluidic live-cell imaging indicates that the nanoparticles act through a membranolytic mechanism. Given their low susceptibility to drug resistance and potent activity against resistant bacteria strains, these findings establish the PEGylated albumin nanoparticles as a potent weaponry against drug resistance and biofilm-related infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app