Add like
Add dislike
Add to saved papers

Anomalous Cooling-Rate-Dependent Charge Transport in Electrolyte-Gated Rubrene Crystals.

Although electrolyte gating has been demonstrated to enable control of electronic phase transitions in many materials, long sought-after gate-induced insulator-metal transitions in organic semiconductors remain elusive. To better understand limiting factors in this regard, here we report detailed wide-range resistance-temperature ( R- T) measurements at multiple gate voltages on ionic-liquid-gated rubrene single crystals. Focusing on the previously observed high-bias regime where conductance anomalously decreases with increasing bias magnitude, we uncover two surprising (and related) features. First, distinctly cooling-rate-dependent transport is detected for the first time. Second, power law R- T is observed over a significant T window, which is highly unusual in an insulator. These features are discussed in terms of electronic disorder at the rubrene/ionic liquid interface influenced by (i) cooling-rate-dependent structural order in the ionic liquid and (ii) the intriguing possibility of a gate-induced glassy short-range charge-ordered state in rubrene. These results expose new physics at the gated rubrene surface, pointing to exciting new directions in the field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app