Add like
Add dislike
Add to saved papers

Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis.

Reports about presence and toxicity of Cd2+ in different chemical industrial effluents prompted the researchers to explore some economical, rapid, sensitive, and accurate methods for its determination and removal from aqueous systems. In continuation of series of investigations, adsorption of Cd2+ onto the stem of Saccharum arundinaceum is proposed in the present work. Optimization of parameters affecting sorption potential of Cd2+ including pH, contact time, temperature, sorbent dose, and concentration of sorbate was carried out to determine best suited conditions for maximum removal of sorbate. To understand the nature of sorption process, linear and nonlinear forms of five sorption isotherms including Freundlich and Langmuir models were employed. Feasibility and viability of sorption process were evaluated by calculating kinetics and thermodynamics of the process, while error analysis suggested best fitted sorption model on sorption data. Thermodynamic studies demonstrated exothermic nature of reaction, while kinetic studies suggested pseudo-second order of reaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app