Add like
Add dislike
Add to saved papers

Investigation on the Neural Mechanism of Hypnosis-Based Respiratory Control Using Functional MRI.

Respiratory control is essential for treatment effect of radiotherapy due to the high dose, especially for thoracic-abdomen tumor, such as lung and liver tumors. As a noninvasive and comfortable way of respiratory control, hypnosis has been proven effective as a psychological technology in clinical therapy. In this study, the neural control mechanism of hypnosis for respiration was investigated by using functional magnetic resonance imaging (fMRI). Altered spontaneous brain activity as well as neural correlation of respiratory motion was detected for eight healthy subjects in normal state (NS) and hypnosis state (HS) guided by a hypnotist. Reduced respiratory amplitude was observed in HS (mean ± SD: 14.23 ± 3.40 mm in NS, 12.79 ± 2.49 mm in HS, p =0.0350), with mean amplitude deduction of 9.2%. Interstate difference of neural activity showed activations in the visual cortex and cerebellum, while deactivations in the prefrontal cortex and precuneus/posterior cingulate cortex (PCu/PCC) in HS. Within these regions, negative correlations of neural activity and respiratory motion were observed in visual cortex in HS. Moreover, in HS, voxel-wise neural correlations of respiratory amplitude demonstrated positive correlations in cerebellum anterior lobe and insula, while negative correlations were shown in the prefrontal cortex and sensorimotor area. These findings reveal the involvement of cognitive, executive control, and sensorimotor processing in the control mechanisms of hypnosis for respiration, and shed new light on hypnosis performance in interaction of psychology, physiology, and cognitive neuroscience.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app