Add like
Add dislike
Add to saved papers

Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization.

Journal of Biotechnology 2018 October 11
The study reports the preparation of a composite consisting of magnetite coated with nanosilica extracted from oil palm leaves (OPL) ash as nanosupports for immobilization of Candida rugosa lipase (CRL) and its application for the synthesis of butyl butyrate. Results of immobilization parameters showed that ∼ 80% of CRL (84.5 mg) initially offered was immobilized onto the surface of the nanosupports to yield a maximum protein loading and specific activity of 67.5 ± 0.72 mg/g and 320.8 ± 0.42 U/g of support, respectively. Surface topography, morphology as well as information on surface composition obtained by Raman spectroscopy, atomic force microscopy, field emission scanning electron microscopy and transmission electron microscopy showed that CRL was successfully immobilized onto the nanosupports, affirming its biocompatibility. Under optimal conditions (3.5 mg/mL protein loading, at 45 ℃, 3 h and molar ratio 2:1 (1-butanol:n-butyric acid) the CRL/Gl-A-SiO2 -MNPs gave a maximum yield of 94 ± 0.24% butyl butyrate as compared to 84 ± 0.32% in the lyophilized CRL. CRL/Gl-A-SiO2 -MNPs showed an extended operational stability, retaining 50% of its initial activity after 17 consecutive esterification cycles. The results indicated that OPL derived nanosilica coated on magnetite can potentially be employed as carrier for lipase immobilization in replacement of the non-renewable conventionalsilica sources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app