Add like
Add dislike
Add to saved papers

Dynamic optimization of fed-batch bioprocesses using flower pollination algorithm.

There exist several optimization strategies such as sequential quadratic programming (SQP), iterative dynamic programing (IDP), stochastic-based methods such as differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSA), and ant colony optimization (ACO) for finding optimal feeding profile(s) during fed-batch fermentations. Here in the present study, flower pollination algorithm (FPA) which is inspired by the pollination process in terrestrial flowering plants has been used for the first time to find the optimal feeding profile(s) during fed-batch fermentations. Single control variable, two control variables and state variable bounded problems were chosen to test the robustness of the FPA for optimal control problems. It was observed that FPA is computationally less intensive in comparison with other stochastic strategies. Thus, obtained results were compared to other studies and it has been found that the FPA converged either to newer optima or closer to the established global optimum for the cases studied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app