Add like
Add dislike
Add to saved papers

Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties.

The heart and its cellular components are profoundly altered by missions to space and injury on Earth. Further research, however, is needed to characterize and address the molecular substrates of such changes. For this reason, neonatal and adult human cardiovascular progenitor cells (CPCs) were cultured aboard the International Space Station. Upon return to Earth, we measured changes in the expression of microRNAs and of genes related to mechanotransduction, cardiogenesis, cell cycling, DNA repair, and paracrine signaling. We additionally assessed endothelial-like tube formation, cell cycling, and migratory capacity of CPCs. Changes in microRNA expression were predicted to target extracellular matrix interactions and Hippo signaling in both neonatal and adult CPCs. Genes related to mechanotransduction ( YAP1, RHOA ) were downregulated, while the expression of cytoskeletal genes ( VIM , NES , DES , LMNB2 , LMNA ), non-canonical Wnt ligands ( WNT5A , WNT9A ), and Wnt/calcium signaling molecules ( PLCG1 , PRKCA ) was significantly elevated in neonatal CPCs. Increased mesendodermal gene expression along with decreased expression of mesodermal derivative markers ( TNNT2 , VWF , and RUNX2 ), reduced readiness to form endothelial-like tubes, and elevated expression of Bmp and Tbx genes, were observed in neonatal CPCs. Both neonatal and adult CPCs exhibited increased expression of DNA repair genes and paracrine factors, which was supported by enhanced migration. While spaceflight affects cytoskeletal organization and migration in neonatal and adult CPCs, only neonatal CPCs experienced increased expression of early developmental markers and an enhanced proliferative potential. Efforts to recapitulate the effects of spaceflight on Earth by regulating processes described herein may be a promising avenue for cardiac repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app