Add like
Add dislike
Add to saved papers

Deep-ultraviolet Raman scattering spectroscopy of monolayer WS 2 .

Scientific Reports 2018 July 31
Raman scattering measurements of monolayer WS2 are reported as a function of the laser excitation energies from the near-infrared (1.58 eV) to the deep-ultraviolet (4.82 eV). In particular, we observed several strong Raman peaks in the range of 700∼850 cm-1 with the deep-ultraviolet laser lights (4.66 eV and 4.82 eV). Using the first-principles calculations, these peaks and other weak peaks were appropriately assigned by the double resonance Raman scattering spectra of phonons around the M and K points in the hexagonal Brillouin zone. The relative intensity of the first-order [Formula: see text] to A1g peak changes dramatically with the 1.58 eV and 2.33 eV laser excitations, while the comparable relative intensity was observed for other laser energies. The disappearance of the [Formula: see text] peak with the 1.58 eV laser light comes from the fact that valley polarization of the laser light surpasses the [Formula: see text] mode since the [Formula: see text] mode is the helicity-exchange Raman mode. On the other hand, the disappearance of the A1g peak with the 2.33 eV laser light might be due to the strain effect on the electron-phonon matrix element.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app