Add like
Add dislike
Add to saved papers

Broadband 2D IR spectroscopy reveals dominant asymmetric H 5 O 2 + proton hydration structures in acid solutions.

Nature Chemistry 2018 September
Given the critical role of the aqueous excess proton in redox chemistry, determining its structure and the mechanism of its transport in water are intense areas of experimental and theoretical research. The ultrafast dynamics of the proton's hydration structure has made it extremely challenging to study experimentally. Using ultrafast broadband two-dimensional infrared spectroscopy, we show that the vibrational spectrum of the aqueous proton is fully consistent with a protonated water complex broadly defined as a Zundel-like H5 O2 + motif. Analysis of the inhomogeneously broadened proton stretch two-dimensional lineshape indicates an intrinsically asymmetric, low-barrier O-H+ -O potential that exhibits surprisingly persistent distributions in both its asymmetry and O-O distance. This structural characterization has direct implications for the extent of delocalization exhibited by a proton's excess charge and for the possible mechanisms of proton transport in water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app