Add like
Add dislike
Add to saved papers

Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles.

Starch is second most abundant biomaterial available after cellulose but the intensity of research on starch is less compared to cellulose. It is a carbohydrate based polymer synthesized in plants for the storage of the energy. Major percentage of starch is being utilized by food industries as raw material for giving texture, flavor, gelling, fat replacement etc. and also has multiple applications in different area due to its biological origin and properties. Native starch possesses low shear stress, poor thermal properties and less digestion resistance and retro-gradation. Thus, it has to be modified using physical, chemical, enzymatic and/or genetic treatments. Physical and chemical modifications using ultrasound and acid hydrolysis is time-efficient and effective process. These economical treatments are predominant for production of digestion resistant starch with increased shelf-life and thermal properties. Ultrasound assisted acid hydrolyzed starch (potato) exfoliates the native starch and modifies the structural arrangement. On acid treatment the amorphous nature of starch converted to crystalline nature. The physical and structural properties of the native starch were enhanced. The digestibility and structure of the modified starch effects on the double helices structure of starch. The size of the starch particle was changed from 1596 nm (Conventional) to 80 and 42 nm on ultrasonication and acid hydrolyzed ultrasonication approaches respectively. The crystallite of the particles was evaluated from XRD analysis. From TEM analysis the starch nanoparticles were found to have spherical morphology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app