Add like
Add dislike
Add to saved papers

Relationships among carbon dioxide, feed intake, and feed efficiency traits in ad libitum fed beef cattle.

Journal of Animal Science 2018 November 22
Angus cattle from 2 beef cattle projects on which carbon dioxide production rate (CPR) was measured were used in this study to examine the relationships among BW, DMI, and carbon dioxide traits of beef cattle fed ad libitum on a roughage diet or a grain-based feedlot diet, and to evaluate potential proxies for DMI and feed efficiency. In both projects, the GreenFeed Emission Monitoring system, which provides multiple short-term breath measures of carbon dioxide production, was used as a tool to measure CPR. The data were from 119 Angus heifers over 15 d on a roughage diet and 326 Angus steers over 70 d on a feedlot diet. Mean (±SD) age, BW, and DMI were 372 ± 28 d, 355 ± 37 kg, and 8.1 ± 1.3 kg/d for the heifers, and 554 ± 86 d, 577 ± 69 kg, and 13.3 ± 2.0 kg/d for the steers, respectively. The corresponding mean CPR was 5760 ± 644 g/d for heifers and 8939 ± 1212 g/d for steers. Other traits studied included carbon dioxide yield (CY; CPR/DMI) and intensity (CI; CPR/BW) and 5 forms of residual carbon dioxide production (RCP), which is a measure of actual minus predicted CPR. Feed efficiency traits studied included feed conversion ratio (FCR) and residual feed intake (RFI). The relationship between CPR and DMI, and between CPR and BW was both positive and linear, for the heifers and also for the steers. For the combined heifer and steer datasets, the R2 for the relationship between CPR and BW, and between CPR and DMI was 0.82 and 0.78, respectively. The correlation between CPR and DMI (r = 0.84 for heifers; r = 0.83 for steers) was similar to that between CPR and BW (r = 0.84 for heifers; r = 0.87 for steers). Most of the carbon dioxide traits were significantly (P < 0.05) correlated with one or both feed efficiency traits. One of the RCP traits (RCPMA) was computed by maintaining metabolic BW (M) and average daily gain (A) in the formula for RFI, but substituting the DMI with CPR. The correlation (r = 0.27) between RCPMA and RFI, though significantly different from zero, was not strong enough for its use as proxy for RFI. On the other hand, a strong correlation (r = 0.73) was obtained between the CPR to gain ratio (CGR) and FCR. This indicates that, where DMI is not available, CPR could be used in its place to compute a feed efficiency trait similar to FCR, since the computation of CGR was similar to that for FCR, except that DMI was substituted with CPR in the FCR formula.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app