Add like
Add dislike
Add to saved papers

Micromotor Pills as a Dynamic Oral Delivery Platform.

ACS Nano 2018 August 29
Tremendous progress has been made during the past decade toward the design of nano/micromotors with high biocompatibility, multifunctionality, and efficient propulsion in biological fluids, which collectively have led to the initial investigation of in vivo biomedical applications of these synthetic motors. Despite these recent advances in micromotor designs and mechanistic research, significant effort is needed to develop appropriate formulations of micromotors to facilitate their in vivo administration and thus to better test their in vivo applicability. Herein, we present a micromotor pill and demonstrate its attractive use as a platform for in vivo oral delivery of active micromotors. The micromotor pill is comprised of active Mg-based micromotors dispersed uniformly in the pill matrix, containing inactive (lactose/maltose) excipients and other disintegration-aiding (cellulose/starch) additives. Our in vivo studies using a mouse model show that the micromotor pill platform effectively protects and carries the active micromotors to the stomach, enabling their release in a concentrated manner. The micromotor encapsulation and the inactive excipient materials have no effects on the motion of the released micromotors. The released cargo-loaded micromotors propel in gastric fluid, retaining the high-performance characteristics of in vitro micromotors while providing higher cargo retention onto the stomach lining compared to orally administrated free micromotors and passive microparticles. Furthermore, the micromotor pills and the loaded micromotors retain the same characteristics and propulsion behavior after extended storage in harsh conditions. These results illustrate that combining the advantages of traditional pills with the efficient movement of micromotors offer an appealing route for administrating micromotors for potential in vivo biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app