COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Comparison of the sympathetic stimulatory abilities of B-type procyanidins based on induction of uncoupling protein-1 in brown adipose tissue (BAT) and increased plasma catecholamine (CA) in mice.

OBJECTIVES: We previously found that elevated energy expenditure following a single oral dose of flavan 3-ols (FL), a mixture of catechins and B type procyanidins, is caused by sympathetic nerve activation. In the present study, we compared the activity of the FL components (-)-epicatechin (EC; monomer), procyanidin B2 (B2; dimer), procyanidin C1 (C1; trimer), cinnamtannin A2 (A2; tetramer), and more than pentamer fraction (P5).

METHODS: Male ICR mice were treated with a single oral dose of FL, EC, B2, C1, A2, or P5. The animals were sacrificed and blood and brown adipose tissue (BAT) sampled. The plasma catecholamine (CA) levels and BAT uncoupling protein (UCP)-1 mRNA expression were determined.

RESULTS: A single dose of 10 mg/kg FL significantly increased plasma CA and UCP-1 mRNA levels. B2, C1, and A2, but not EC and P5 (all at 1 mg/kg), significantly increased plasma adrenaline levels. Plasma noradrenaline was significantly elevated by B2 and A2, but not by EC, C1, or P5. UCP-1 mRNA levels were significantly increased by C1 and P5. In the dose response study of A2, 10-3 mg/kg A2 increased UCP-1 mRNA levels significantly, but not 10-2 and 10-1 mg/kg A2. In addition, combination treatment with 10-1 mg/kg A2 and yohimbine, an α2 adrenalin blocker, remarkably increased UCP-1 mRNA levels.

CONCLUSION: These results suggest that FL and its components, except EC, increase UCP-1 mRNA and plasma CA with varying efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app