Add like
Add dislike
Add to saved papers

Novel molecules mediate specialized functions of human regulatory macrophages.

PURPOSE OF REVIEW: Now that adoptive transfer of regulatory macrophages (Mregs) is clinically practicable, we ask whether this approach could be used to achieve self-sustaining peripheral regulation and what mechanisms may be involved.

RECENT FINDINGS: Dehydrogenase/reductase 9 (DHRS9)-expressing Mregs are a specialized subset of monocyte-derived macrophages that are currently being investigated as a tolerogenic cell-based therapy. Human Mregs are defined by their capacity to convert naïve CD4 T cells to IL-10-secreting FoxP3 regulatory T cells (Tregs) through an activation-dependent process involving signals mediated by TGF-β, retinoic acid, indoleamine 2,3-dioxygenase activity, notch and progestagen associated endometrial protein (PAEP). Mreg-induced iTregs (miTregs) are a phenotypically distinct type of in-vitro-derived human iTreg that expresses butyrophilin-like protein 8 (BTNL8) and T cell immunoreceptor with Ig and ITIM domains (TIGIT). miTregs are nonspecifically suppressive of mitogen-stimulated bystander T cell proliferation and inhibit TNFα-induced maturation of monocyte-derived dendritic cells. Preclinical and clinical studies find that intravenous infusion of allogeneic Mregs leads to enrichment of circulating TIGIT Tregs.

SUMMARY: These results suggest a feed-forward mechanism by which Mreg treatment could promote solid organ transplant acceptance through rapid induction of direct pathway Tregs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app