Add like
Add dislike
Add to saved papers

Spontaneous Formation of Noble- and Heavy-Metal-Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis.

Advanced Materials 2018 September
Quasi-1D cadmium chalcogenide quantum rods (QRs) are benchmark semiconductor materials that are combined with noble metals to constitute QR heterostructures for efficient photocatalysis. However, the high toxicity of cadmium and cost of noble metals are the main obstacles to their widespread use. Herein, a facile colloidal synthetic approach is reported that leads to the spontaneous formation of cadmium-free alloyed ZnSx Se1- x QRs from polydisperse ZnSe nanowires by alkylthiol etching. The obtained non-noble-metal ZnSx Se1- x QRs can not only be directly adopted as efficient photocatalysts for water oxidation, showing a striking oxygen evolution capability of 3000 µmol g-1 h-1 , but also be utilized to prepare QR-sensitized TiO2 photoanodes which present enhanced photo-electrochemical (PEC) activity. Density functional theory (DFT) simulations reveal that alloyed ZnSx Se1- x QRs have highly active Zn sites on the (100) surface and reduced energy barrier for oxygen evolution, which in turn, are beneficial to their outstanding photocatalytic and PEC activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app