Add like
Add dislike
Add to saved papers

Early life esophageal acid exposure reduces expression of NMDAR1 in the adult rat dorsal hippocampus and medial prefrontal cortex: Potential relationship with hyperlocomotion.

OBJECTIVE: Early life esophageal acid exposure causes long-term molecular alterations in the rostral cingulate cortex; however, whether it induces behavioral changes remains unverified. Little is known about the molecular changes resulting from this event in the developing hippocampus and medial prefrontal cortex (mPFC). This study aimed to investigate the influence of early life esophageal acid exposure on spontaneous locomotor behavior and N-methyl-D-aspartate receptor (NMDAR), expression in these brain regions of adult rats.

METHODS: Male Sprague-Dawley rats were administered with an esophageal acid or saline infusion once per day (postnatal days 7-14). Some of these rats were given acute esophageal acid rechallenge in adulthood (postnatal day 60). The spontaneous locomotor behavior and expressions of esophageal epithelial caludin-1 and NMDAR subunits in the dorsal hippocampus (DH), ventral hippocampus (VH) and mPFC of the adult rats were recorded.

RESULTS: Neonatal esophageal acid stimulation caused long-term impairment of the tight junctions in the adult esophagus. Simultaneously, hyperlocomotion and reduced expression of NMDAR1 subunits in both the DH and mPFC were observed, but not in the VH regions. Adult acute acid rechallenge reversed the decreased NMDAR1 expression in the DH and mPFC. The glycine ligand to NMDAR1 subunits was also changed.

CONCLUSIONS: Peripheral visceral stimulation such as esophageal acid exposure during cerebral development induces increased locomotor activity, which may be related to the alteration of central sensitivity via NMDAR1 subunit reduction in the DH and mPFC. The impairment of tight junctions in the esophageal epithelium may contribute to the formation of central neuroplasticity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app