Add like
Add dislike
Add to saved papers

Motion compensation using principal component analysis and projection onto dipole fields for abdominal magnetic resonance thermometry.

PURPOSE: High intensity focused ultrasound (HIFU) has the potential to locally and non-invasively treat cancer with fewer side effects than alternative therapies. However, motion and tissue heterogeneity in the abdomen can compromise the HIFU focus and confound current thermometry methods.

METHODS: The proposed thermometry method combines principal component analysis (PCA), as a multi-baseline technique, and projection onto dipole fields (PDF), as a near-referenceless method. PCA forgoes tracking tools by projecting incoming images onto a subspace spanning the motion history. PDF is subsequently used to synthesize the naturally feasible components of the residual phase using a magnetic dipole model. This leaves only the phase shifts that are induced by HIFU.

RESULTS: With in vivo measurements, in porcine and human kidneys, the mean pixel-wise temperature SD was 0.86 ± 0.41°C in selected regions of interest (ROIs) across all data sets, without any user-interaction or supplementary tracking tools. This is an improvement over a benchmark hybrid method, which scored 1.36 ± 1.20°C on the same data. Uncorrected subtraction of the data yielded a score of 3.02 ± 2.87°C.

CONCLUSION: The PCA-PDF hybrid method achieves superior artifact correction by exploiting the motion history and intrinsic magnetic susceptibility of the underlying tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app