Add like
Add dislike
Add to saved papers

Identification of metabolic phenotypes in childhood obesity by 1 H NMR metabolomics of blood plasma.

Aim: To identify the plasma metabolic profile associated with childhood obesity and its metabolic phenotypes.

Materials & methods: The plasma metabolic profile of 65 obese and 37 normal-weight children was obtained using proton NMR spectroscopy. NMR spectra were rationally divided into 110 integration regions, which reflect relative metabolite concentrations, and were used as statistical variables.

Results: Obese children show increased levels of lipids, N-acetyl glycoproteins, and lactate, and decreased levels of several amino acids, α-ketoglutarate, glucose, citrate, and cholinated phospholipids as compared with normal-weight children. Metabolically healthy children show lower levels of lipids and lactate, and higher levels of several amino acids and cholinated phospholipids, as compared with unhealthy children.

Conclusion: This study reveals new valuable findings in the field of metabolomics and childhood obesity. Although validation should be performed, the proof of principle looks promising and justifies a deeper investigation of the diagnostic possibilities of proton NMR metabolomics in follow-up studies. Trial registration: NCT03014856. Registered January 9, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app