Add like
Add dislike
Add to saved papers

One-step hydrothermal synthesis of N/Ti 3+ co-doping multiphasic TiO 2 /BiOBr heterojunctions towards enhanced sonocatalytic performance.

N/Ti3+ co-doping multiphasic TiO2 /BiOBr heterojunctions (NT-TBx) were prepared by one-step in situ hydrothermal processes. The crystal phase, morphology, component, and optical properties of the heterojunctions were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy, and Ultraviolet-visible diffuse reflectance spectroscopy techniques, respectively. The as-prepared samples exhibit better sonocatalytic activity for the degradation methylene blue, Rhodamine B, and p-Nitrophenol aqueous solution compared with pristine TiO2 and N/Ti3+ co-doping multiphasic TiO2 . Especially, the highest degradation ratio of methylene blue was achieved for NT-TB0.3 up to 98.2% after 50 min under ultrasonic irradiation. The high sonocatalytic activity has been kept after four cycles with the tiny decline, indicating the excellent stability of the as-prepared samples. The improvement of sonocatalytic activity could be attributed to the formation of doping level and multiphasic TiO2 /BiOBr heterojunctions, which account for the absorption of long wavelength light and the electron-hole pair separation, respectively. Furthermore, superoxide radical (O2 - ) was demonstrated to be the main reactive species for the degradation of methylene blue under ultrasonic irradiation. This study provides a facile fabrication procedure for N/Ti3+ co-doping multiphasic TiO2 /BiOBr heterojunctions and demonstrates an efficient route to promote the application of TiO2 in addressing environment-related issues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app