Add like
Add dislike
Add to saved papers

Sequential Molecular Events of Functional Trade-Offs in 5-Hydroxyisourate Hydrolase Before and After Gene Duplication Led to the Evolution of Transthyretin During Chordate Diversification.

Transthyretin (TTR), a plasma thyroid hormone distributor protein (THDP), emerged from 5-hydroxyisourate hydrolase (HIUHase), an enzyme involved in urate metabolism, by gene duplication at a stage of chordate evolution. Comparison of amino acid sequences revealed the presence of two His-rich segments in the primitive TTRs. Using several HIUHase and TTR mutants, we investigated 5-hydroxyisourate (HIU) hydrolysis activity and thyroid hormone (TH) binding activity to elucidate how a novel function as a THDP arose. Lancelet HIUHase was found to have higher enzyme activity than trout HIUHase. Two amino acid substitutions, R54E/Y119T, at the active sites of HIUHase, exerted weak [125 I]-3,3',5-triiodo-L-thyronine ([125 I]T3) binding activity with a concomitant loss of HIU hydrolysis activity. Addition of 3×His (3×H) to the N-terminal end weakened HIU hydrolysis activity of both lancelet and trout HIUHases, whereas it enhanced T3-binding activity of HIUHase R54E/Y119T. Trout HIUHase 3×H R54E/Y119T had higher [125 I]T3-binding activity than that of lancelet HIUHase 3×H R54E/Y119T, with a Kd of 143 nM, and displayed metal dependency and no TH binding specificity. Deletion of the N-terminal His-rich segment from lamprey TTR decreased T3-binding activity, while addition of 3×H to trout TTR increased T3-binding activity, while maintaining TH binding specificity. Our results suggest that functional trade-offs of HIU hydrolysis activity with TH binding activity might have sequentially occurred before and after gene duplication, and that TH binding specificity and high-affinity sites may have been acquired later in the course of TTR evolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app