Add like
Add dislike
Add to saved papers

Iterative algorithms for metal artifact reduction in children with orthopedic prostheses: preliminary results.

Pediatric Radiology 2018 December
BACKGROUND: Increased computational power allows computed tomography (CT) software to process very advanced mathematical algorithms to generate better quality images at lower doses. One such algorithm, iterative metal artifact reduction (iMAR) has proven to decrease metal artifacts seen in CT images of adults with orthopedic implants.

OBJECTIVES: To evaluate artifact reduction capability of the algorithm in lower-dose pediatric CT compared to our routine third-generation advanced modeled iterative reconstruction (ADMIRE) algorithm.

MATERIALS AND METHODS: Thirteen children (11-17 years old) with metal implants underwent routine clinically indicated CT. Data sets were reconstructed with an iMAR algorithm. Hounsfield units and image noise were measured in bone, muscle and fat in the streak artifact (near the implant) and at the greatest distance from the artifact (far from the implant). A regression model compared the effects of the algorithm (standard ADMIRE vs. iMAR) near and far from the implant.

RESULTS: Near the implant, Hounsfield units with iMAR were significantly different in our standard ADMIRE vs. iMAR for bone, muscle and fat (P<0.001). Noise was significantly different in standard ADMIRE vs. iMAR in bone (P<0.003). Far from the implant, Hounsfield units and noise were not significantly different for ADMIRE vs. iMAR, for the three tissue types.

CONCLUSION: These preliminary results demonstrate that iMAR algorithms improves Hounsfield units near the implant and decreases image noise in bone in low-dose pediatric CT. It does this without changing baseline tissue density or noise far from the implant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app