Add like
Add dislike
Add to saved papers

On the performance of electrocatalytic anodes for photoelectro-Fenton treatment of synthetic solutions and real water spiked with the herbicide chloramben.

The destruction of the herbicide chloramben in 0.050 M Na2 SO4 solutions at natural pH has been studied by photoelectro-Fenton with UVA light (PEF). The trials were carried out in a cell equipped with an air-diffusion cathode for H2 O2 generation and different electrocatalytic anodes, namely active IrO2 -based and RuO2 -based electrodes and non-active boron-doped diamond (BDD) and PbO2 ones. Similar removal rates were found regardless of the anode nature because the herbicide was mainly oxidized by OH formed from Fenton's reaction, which was enhanced by UVA-induced photo-Fenton reaction. The use of an IrO2 -based anode led to almost total mineralization at high current density, as also occurred with the powerful BDD anode, since photoactive intermediates originated from OH-mediated oxidation were degraded under irradiation with UVA light. The good performance of the IrO2 -based anode in PEF was confirmed at different current densities and herbicide concentrations. The presence of Cl- in the medium caused a slight deceleration of herbicide removal as well as mineralization inhibition, owing to the production of active chlorine with consequent formation of persistent chloroderivatives. Seven aromatic products along with oxalic and oxamic acids were identified in sulfate medium. Five aromatic derivatives were detected in Cl- -containing matrix, corroborating the generation of organochlorine compounds. In secondary effluent, larger mineralization was achieved by PEF with a BDD anode due to its high oxidation ability to destroy the chloroderivatives, although an acceptable performance was also obtained using an IrO2 -based anode.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app