Add like
Add dislike
Add to saved papers

Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems.

A 120-day feeding trial was conducted to evaluate the effect of different stocking densities on growth, the non-specific immunities, antioxidant status and digestive enzyme activities of Oreochromis niloticus fingerlings under a zero-water exchange biofloc system. Tilapias (0.51 ± 0.05 g) were randomly distributed in twelve tanks, each with 300 L water. The experimental design was completely randomized using three replications with four treatments 166 orgs m-3 (LD, low density), 333 orgs m-3 (MD, middle density) and 600 orgs m-3 (HD, high density) with glucose added as biofloc groups, and a clear water group without glucose added as a control 333 orgs m-3 . The fish cultured in LD and MD group showed higher final body weight. For the digestive enzymes, the lipase, trypsin, and amylase activities were all depressed in HD group and control group. Regarding the immune and antioxidant abilities, significantly lower values (P < 0.05) of the lysozyme, complement 3, and glutathione were observed for the fish that reared in the control group and HD group. The stress indicator, the cortisol, 5-hydroxytryptamine, and glucose concentrations were also depressed in HD group and control group, meanwhile the alanine aminotransferase, aspartate transaminase and alkaline phosphatase were all higher in HD group and control group. The significant higher survival was observed in the LD and MD group after Vibrio harveyi challenge test. The results of the experiment indicated that the biofloc in situ had the effects of anti-crowding stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app