Add like
Add dislike
Add to saved papers

Catalytic bioscavengers against organophosphorus agents: mechanistic issues of self-reactivating cholinesterases.

Toxicology 2018 November 2
Catalytic bioscavengers are the second-generation bioscavengers. These biopharmaceuticals are intended to degrade toxic organophosphorus agents on the skin for decontamination or in the bloodstream for pre-treatment and post-exposure treatment of organophosphate poisoning. Because catalytic degradation has to be fast, their catalytic efficiency has to be as high as possible (kcat /Km >106 M-1  min-1 ). Certain evolved mammalian paraoxonases and bacterial phosphotriesterases already fulfill this requirement. To be of interest, the catalytic activity of certain enzymes has to be increased by several orders of magnitude. This can be reached by computer-redesign or directed evolution existing enzymes, and alternatively, combinational strategies. The present paper focuses on the better understanding of catalytic mechanisms of cholinesterase inhibition, aging and reactivation and how this knowledge serves the rational design of novel catalytic bioscavengers based on cholinesterase structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app