Add like
Add dislike
Add to saved papers

Fabrication of Si and Ge nanoarrays through graphoepitaxial directed hardmask block copolymer self-assembly.

Films of self assembled diblock copolymers (BCPs) have attracted significant attention for generating semiconductor nanoarrays of sizes below 100 nm through a simple low cost approach for device fabrication. A challenging abstract is controlling microdomain orientation and ordering dictated by complex interplay of surface energies, polymer-solvent interactions and domain spacing. In context, microphase separated poly (styrene-b-ethylene oxide) (PS-b-PEO) thin films is illustrated to fabricate nanopatterns on silicon and germanium materials trenches. The trenched templates was produced by simple electron beam lithography using hydrogen silsesquioxane (HSQ) resist. The orientation of PEO, minority cylinder forming block, was controlled by controlling trench width and varying solvent annealing parameters viz. temperature, time etc. A noticeable difference in microdomain orientation was observed for Si and Ge trenches processed under same conditions. The Ge trenches promoted horizontal orientations compared to Si due to difference in surface properties without any prior surface treatments. This methodology allows to create Ge nanopatterns for device fabrication since native oxides on Ge often induce patterning challenges. Subsequently, a selective metal inclusion method was used to form hardmask nanoarrays to pattern transfer into those substrates through dry etching. The hardmask allows to create good fidelity, low line edge roughness (LER) materials nanopatterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app