Add like
Add dislike
Add to saved papers

DNA physical properties outperform sequence compositional information in classifying nucleosome-enriched and -depleted regions.

Genomics 2018 July 27
The nucleosome is the fundamental structural unit of eukaryotic chromatin and plays an essential role in the epigenetic regulation of cellular processes, such as DNA replication, recombination, and transcription. Hence, it is important to identify nucleosome positions in the genome. Our previous model based on DNA deformation energy, in which a set of DNA physical descriptors was used, performed well in predicting nucleosome dyad positions and occupancy. In this study, we established a machine-learning model for predicting nucleosome occupancy in order to further verify the physical descriptors. Results showed that (1) our model outperformed several other sequence compositional information-based models, indicating a stronger dependence of nucleosome positioning on DNA physical properties; (2) nucleosome-enriched and -depleted regions have distinct features in terms of DNA physical descriptors like sequence-dependent flexibility and equilibrium structure parameters; (3) gene transcription start sites and termination sites can be well characterized with the distribution patterns of the physical descriptors, indicating the regulatory role of DNA physical properties in gene transcription. In addition, we developed a web server for the model, which is freely accessible at https://lin-group.cn/server/iNuc-force/.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app