Add like
Add dislike
Add to saved papers

Aberrant regulation of the Akt signaling network by human cytomegalovirus allows for targeting of infected monocytes.

Antiviral Research 2018 October
Primary peripheral blood monocytes are responsible for the hematogenous dissemination of human cytomegalovirus (HCMV) following a primary infection. In order to facilitate viral spread, HCMV extends the naturally short 48-h lifespan of monocytes by stimulating a non-canonical activation of Akt during viral entry, which leads to the increased expression of a specific subset of antiapoptotic proteins. In this study, global analysis of the Akt signaling network showed HCMV induced a more robust activation of the entire network when compared to normal myeloid growth factors. Furthermore, we found a unique interplay between HCMV-activated Akt and the stress response transcription heat shock factor 1 (HSF1) that allowed for the synthesis of both cap- and internal ribosome entry site (IRES)-containing antiapoptotic mRNAs such as myeloid cell leukemia-1 (Mcl-1) and X-linked inhibitor of apoptosis (XIAP), respectively. As generally a switch from cap-dependent to IRES-mediated translation occurs during cellular stress, the ability of HCMV to concurrently drive both types of translation produces a distinct milieu of prosurvival proteins needed for the viability of infected monocytes. Indeed, we found inhibition of XIAP led to death of ∼99% of HCMV-infected monocytes while having minimal effect on the viability of uninfected cells. Taken together, these data indicate that the aberrant activation of the Akt network by HCMV induces the upregulation of a unique subset of antiapoptotic proteins specifically required for the survival of infected monocytes. Consequently, our study highlights the possibility of exploiting these virus-induced changes to prevent viral spread in immunocompromised patients at high-risk for HCMV exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app