Add like
Add dislike
Add to saved papers

Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling.

In this work, agro-wastes coming from soursop (peel, seeds and pulp fiber) and sugarcane (bagasse) are used as low-cost biosorbents to remove methylene blue (MB) from aqueous media. Batch experiments are performed under different experimental conditions investigating the effects of biosorbent amount, dye concentration and stirring rate. The best results were found using soursop wastes for a MB concentration of 100 mg L-1 , using 0.75 g of residue and a stirring rate of 110 rpm, removing a percentage above 90%. Theoretically, adsorption kinetic can be successfully described by the pseudo-second order model. Redlich-Peterson and Sips models are adopted to interpret the equilibrium adsorption of MB on sugarcane bagasse and soursop residue, respectively. Interestingly, the monolayer model with single energy derived by statistical physics theory is also applied for a deeper explanation of the adsorption mechanism of MB on both the adsorbents. The application of this model allows defining the adsorption geometry of the investigated adsorbate and provides important information about the interactions between the adsorbate and sorbents. In particular, the modelling analysis by statistical physics allows defining that the dye molecules are adsorbed in vertical position and the adsorption process is multi-molecular (i.e. n > 1). Finally, the estimation of adsorption energy suggested that MB adsorption on biosorbent is a physisorption process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app